Blue-White
 Industries, Ltd.
 Technical Data Sheet F-2000 Series - Digital Paddlewheel Flow Sensor

F-2000 Features:

- TTL/CMOS compatible, current sinking Hall Effect output signal. Optional AC sine wave output sensor available.
One mile signal range without boosters.
NEMA 4X rated

F-2000 Specifications:
Max. Working Pressure 300 psig (20 bar) @ $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$
Max. Fluid Temperature $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right) @ 0$ PSI (Polypropylene in-line, PVDF saddle, 316SS Tee) $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right) @ 0 \mathrm{PSI}$ (PVC saddle and Tee fittings)
Note: Temperature rating of sensor only. Actual pipe rating may vary.
Power requirements. \qquad 6-24 VDC, AC/DC transformer sold separately
Full scale accuracy \qquad +-- 1\%
Sensor/Paddle/Axle material . PVDF
O-ring seals:
Approximate shipping weight. $2 \mathrm{lb} .(0.9 \mathrm{~kg})$

SADDLE MOUNT FHXX15K8

MACHINED IN-LINE F/NPT FHXX15P1

PVC SOLVENT WELD TEE FHXX20AT

Saddle mount - IPS Pipe					Tee mount			
Pipe Size	Flow Range	$\text { SCH } 40$ Model Number	SCH 80 Model Number		$\begin{aligned} & \text { Pipe } \\ & \text { Size } \\ & \hline \end{aligned}$	GPM Flow Range	316 SS Tee e Model Numb	PVC Tee Model Number
1-1/2"	15 to 150	FHXX15K4		XX15K8	1"	6 to 60	FHXX10ST	FHXX10AT
2"	30 to 300	FHXX20K4		XX20K8	1-1/2"	15 to 150	FHXX15ST	FHXX15AT
3"	60 to 600	FHXX30K4		XX30K8	2"	30 to 300	FHXX20ST	FHXX20AT
4"	100 to 1000	FHXX40A4		XX40A8				
$6 "$	250 to 2500	FHXX60A4		X660A8				
8"	400 to 4000	FHXX80A4		XX80A8				
10"	600 to 6000	FHXX100A4	FHX	X100A8				
12"	800 to 8000	FHXX120A4	FHX	X120A8				
		olded In-Li	e -	M/NPT		Machine	d In-Line	F/NPT
Pipe	G.P.M.	POLYPROPYL	ENE	PVDF		P.M. POLY	YPROPYLENE	PVDF
Size	Flow Range	e Model Numb		Model Number	Flow	Range Mo	odel Number	Model Number
3/8"	. 8 to 8	FHXX38M		FHXX38F1		to 8	FHXX38P1	FHXX38K1
3/8"	. 4 to 4	FHXX38M		FHXX38F2		to 4	FHXX38P2	FHXX38K2
1/2"	2 to 20	FHXX50M		FHXX50F1		20 F	FHXX50P1	FHXX50K1
1/2"	. 5 to 5	FHXX50M		FHXX50F2		to 5	FHXX50P2	FHXX50K2
3/4"	3 to 30	FHXX75M		FHXX75F1		40	FHXX75P1	FHXX75K1
3/4"	. 8 to 8	FHXX75M		FHXX75F2		to 8 F	FHXX75P2	FHXX75K2
$1 "$	5 to 50	FHXX10M		FHXX10F1		60 F	FHXX10P1	FHXX10K1
$1 "$	2 to 20	FHXX10M		FHXX10F2		20	FHXX10P2	FHXX10K2
1-1/2"	" 4 to 40	FHXX15M		FHXX15F1		10	FHXX15P5	FHXX15K5
1-1/2"	" 6 to 60	FHXX15M		FHXX15F2		60 F	FHXX15P3	FHXX15K3
1-1/2"	" 10 to 100	FHXX15M		FHXX15F3		150	FHXX15P1	FHXX15K1
2"	4 to 40	FHXX20M		FHXX20F1		20	FHXX20P6	FHXX20K6
2"	6 to 60	FHXX20M		FHXX20F2		60	FHXX20P4	FHXX20K4
2"	10 to 100	FHXX20M		FHXX20F3		150	FHXX20P2	FHXX20K2
$2 "$	20 to 200	FHXX20M		FHXX20F4		300	FHXX20P1	FHXX20K1
Model Number Power Supply for above F-2000 Sensors								
90008-336 Power supply, 115VAC primary, 15VDC secondary (U.S. Style plug)								
90008-337 Power sup		supply, 220VAC	prim	ry, 15VDC seco	ry (Eur	pean Style plu	plug)	
71000-310 Power sup		supply, 230VAC	prim	ry, 15VDC seco	ry (IEC	input plug and	nd cord)	

Blue-White
 Industries, Ltd.
 Installation Guidelines F-2000 Series - Digital Paddlewheel Flow Sensor

Fluid Flow Stream Requirements

Measuring accuracy requires a fully developed turbulent flow profile. Pulsating, swirling and other disruptions in the flow stream will effect accuracy. Flow conditions with a Reynolds Number greater than 4000 will result in a fully developed turbulent flow. A Reynolds Number less than 2000 is laminar flow and may result in inaccurate readings.
REYNOLDS NUMBER EQUATION:
REYNOLDS NUMBER $=3160 \times \mathrm{Q} \times \mathrm{G}$
D $\times \mathrm{V}$
Where
Flow rate of the fluid in GPM = Q
Specific gravity of the fluid $=G$
Pipe inside diameter in inches = D
Fluid viscocity in centepoise $=\mathrm{V}$

Minimum Straight Pipe Length Requirements

The sensor's accuracy is affected by disturbances such as pumps, elbows, tees, valves, etc., in the flow stream. Install the sensor in a straight run of pipe as far as possible from any disturbances. The distance required for accuracy will depend on the type of disturbance.

Type Of Disturbance	Minimum Inlet Pipe Length	Minimum Outlet Pipe Length
Flange	$10 \times$ Pipe Inside Diameter	$5 \times$ Pipe Inside Diameter
Reducer	$15 \times$ Pipe Inside Diameter	$5 \times$ Pipe Inside Diameter
90° Elbow	$20 \times$ Pipe Inside Diameter	$5 \times$ Pipe Inside Diameter
Two 90° Elbows -1 Direction	$25 \times$ Pipe Inside Diameter	$5 \times$ Pipe Inside Diameter
Two 90° Elbows -2 Directions	$40 \times$ Pipe Inside Diameter	$5 \times$ Pipe Inside Diameter
Pump Or Gate Valves	$50 \times$ Pipe Inside Diameter	$5 \times$ Pipe Inside Diameter

Mounting location and pressure/temperature requirements

- The sensor is designed to withstand outdoor conditions. A cool, dry location, where the unit can be easily serviced is recommended.
- The sensor can be mounted on horizontal or vertical runs of pipe. Mounting at the vertical (twelve o'clock) position on horizontal pipe is recommended. Mounting anywhere around the diameter of vertical pipe is acceptable, however, the pipe must be completely full of water at all times. Back pressure is essential on downward flows. See the minimum straight length of pipe requirement chart above.
- The sensor can accurately measure flow from either direction.

